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Abstract. We study the equivalent Schradinger equation for the bounce configuration. We 
get the lowest eigenvalue i n  the limit of small external currents using the Landau-Lifshitz 
approach. 

1. Introduction 

The path integral formulation for quantum models is limited by the fact that we are 
only able to integrate Gaussians. In quantum mechanics and in quantum field theory, 
where we have interactions (polynomial potentials whose highest power is bigger than 
two), in generai we can obtain non-penurbarive information by using the semi-ciassicai 
approximation [ l ,  21. In the semi-classical approximation, we calculate the Gaussian 
correction to classical configurations that are solutions of the Euler-Lagrange equation 
121 that satisfy the boundary conditions of the path integral. This Gaussian correction 
reduces in general to discuss the spectrum of an associated Schrodinger equation with 
a given potential-the equivalent Schrodinger problem. 

For theories that ilassica::y have degeiieiate iiiinima of the potential, e.g. 8 i x j  = 
g/4(x2- a2)2 ,  the solutions of the Euler-Lagrange equation are the constant configur- 

ations x =+a, or the kink solutions [l], depending on the boundary conditions. The 
semi-classical contribution from these configurations have been studied in the literature 

The aim of this comment is to derive the lowest energy eigenvalue of the Schrodinger 

solution for a one-dimensional theory with a potential of the form i t ( x ) =  
(g/4)(x2 - a*) ' -  Jx, where x = x(r) is a time-dependent coordinate and J an external 
current, for small values of J. In this case, the linear term in x breaks the degeneracy 
and, for boundary conditions such that Iim,+- x ( t )  = *a, we have the so-called bounce 
solution [SI. The Schrodinger equivalent operator has a negative eigenvalue since J is 
ditreren! from zero. The f x t  !h.! J + 0' but I is not exac!!g zero a!so m e a x  t h ~ !  !he 
classical potential is almost degenerate. 
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In section 2 we review the Schrodinger equivalent problem for the kink solution. 
In section 3 we discuss the Schrodinger equivalent operator when J + O‘, from the 
exact expression for the bounce configuration, and in section 4 we discuss some features 
of the problem. In the appendix we give the integrals needed to get the final result. 

2. Review of the Gaussian Contribution to the kink solution 

The double-well potential V(x) =$g(x’ -a’ ) ) ’  has degenerate minima at x = *a, at the 
classical level. However, at the quantum level, this degeneracy is lifted by the existence 
of a solution (the kink) that links the two degenerate minima [1,3]. The kink is an 
extremum of the Euclidean action (the Euclidean action is obtained by going to 
imaginary time, f + i f .  For the double-well potential, the Euclidean Lagrangian for unit 
mass is 

and the solution of the Euler-Lagrange equation satisfying the conditions that for 
;;=m,x==nand:;+m,x=fn is 

f ( f )  = a  tanh( &(f-f!))  

which is known as  the kink solution. 

fluctuation around f ( f ) ,  
The Gaussian contribution from the kink configuration is obtained considering a 

x( 1) = n ( f ) +  q( t )  (2.3) 

and keeping only terms up to second order in the fluctuation v ( t ) .  Then the Euclidean 
kernel (a, +m)-a, -a$, which allows the calculation of the lowest energy level and the 
splitting of the two firs! levels, is given by the path integral 

where S[n] is the classical action associated with the kink, 

and Ho is the operator, 

In (2.4)-(2.6) the integrations over f run from -T  to +T and the limit T + m  is 
understood to be taken at the end of the calculations. 

The operator Hu is a Schrodinger-like Hamiltonian operator for a unit-mass particle. 
Their eigenfunctions and eigenvalues are well-known energy eigenfunctions and eigen- 
values [6] .  
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3. The Schrodinger operator in the bounce case 

The system whose classical potential is 

( 3 . 1 )  

may be seen as the system described in section 2 in the presence of an external current 
J. For J f 0, S(x) does not have degenerate minima (see figure l) ,  and we are interested 
in obtaining information when I + O+ and we are in Euclidean space. 

g 
4 

6 ( ~ ) = -  ( x 2 -  JX 

Figure 1. The shape of the potential 3(x)  for JEIO, J J  x, and x2 are the relative and 
absolute minima of 41x) respectively and x, its relative maximum. 

The bounce is a solution of the Euclidean equation of motion which has finite 
energy, and is such that starting in the remote 'past' in the local (non-absolute) minimum 
of B(x) (see figure l ) ,  suffers reflection at  the potential barrier associated with the 
other minimum and returns in the remote 'future' to the original one. The exact analytic 
expression of the bounce is [7] 

where to is an arbitrary constant that appears as a consequence of time translation 
invariance of the Euclidean Lagrangian, A and i are constants, 

g 
2 

A =- ( 3 ~ : - a ' )  (3 .3a )  

(3 .36 )  

and x, is the position of the relative minimum of S(x) as indicated in figure 1. We 
note that lim,,,, i( I )  = x, .  From now on we take t o=  0. 
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The contribution from the fluctuation around f B  to the path integral is calculated 
in the same way as we did for the symmetric double-well potential in section 2, by 
making a change of variables of the type (2.3) around the bounce solution f , ( t ) .  

The path integral is given by 

where S[f,] is the bounce classical action, 

SI-, x 1- - J dt[f($,)2+B(2R)] (3.5) 

and U ( t )  is a double-well potential function whose shape is illustrated in figure 2, 

U( , )  = , 4 1 1  -: [ sechi( 2 ( t +  T I )  +sech2( 2 ( t  - F))]]. (3.6) 

The separation between the wells is 2f, with, for small values of J, 

(3.7) 

The distance between the wells increases as J goes to zero. We should notice that for 
J = 0, we have A = ga2 and the Schrodinger-like potential U (  1 )  becomes asuperposition 
of two potentials of the form of the kink case in section 2 (see e.g. 2.6) very far away 
one from each other, in a constant background. 

Figure 1. The shape of the potential U ( [ )  associated with the negative eigenvalue problem. 
+iare the minima of  U ( ( )  and A its asymptotic value for Iil+m. 

From the expression of U ( r )  and its form (see figure 2) we notice that we have a 
tunnelling effect between the two wells, such that the eigenenergy that we would have 
if there would exist only one well is split into two levels. In  the limit J+O' we notice 
that one well is exactly equal to the potential of the kink Schrodinger-like operator 
(section 2), whose lowest eigenvalue is zero. 

Let us call H the Schrodinger-like operator that appears in the exponent of (3.4). 

1 d2 
H = - - ? + U ( t )  

2 dt  
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Since the Hamiltonian (3.8) is obtained by using the expansion around the bounce 
solution, its (unnormalized) eigenfunction corresponding to the zero eigenvalue is 
given by 

(3.9) 
&(t) =F= dfR(f) sech'( 8 ( t  - i ) )  -secb'( 8 ( I  + i)). 

However, from the shape of $ o ( t )  depicted in (figure 3) we see that t+bo(t) is not 
the eigenfunction corresponding to the lowest eigenvalue, which means that there 
exists another eigenfunction t) corresponding to a negative eigenvalue. This 
eigenstate plays the role of the vacuum in the equivalent Schrodinger problem con- 
sidered here. The importance of the presence of the negative eigenvalue of (3 .8)  is 
because it implies that we cannot keep only the quadratic contribution in (3.4),  forcing 
us to devise ways to obtain information from the quartic and cubic terms [7]. 

U,l t I 

Figure 3. The shape of the  zero eigenfunction of the Schriidinger equivalent problem used 
to take into account the quantum contribution around the classical bounce solution. 

To obtain the vacuum eigenvalue of H, call it E- ,  , we use the method for calculating 
the splitting of an energy level due to the existence of a barrier between two potential 
wells [SI. We remark that the set of the eigenfunctions and eigenvalues of the operator 
Ho (2.6) is known and, in particular, the normalized zero-mode eigenfunction is 

po(t) = ( sech2( 2 ( I  - 0). (3.10) 

Now, from the Schrodinger equations associated to the kink, H,p,,=O, and to the 
bounce solution, H$-, = E- ,$- , ,  we have, rewriting Ho in the form Ho= 
- fd2/dt2+ V , ( f ) ,  

(3 .11~1)  

Subtracting (3.11b) from ( 3 . 1 1 0 )  and taking into account the vanishing of +%(I), $ - , ( I )  
and of its derivatives at t -, +m, we get 

te +a- 

d t ( P o ( t ) ( ~ ( f ) - V " ( t ) ) $ - , ( t ) = E - ,  (3.12) 
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Up to now we have made no approximations in the calculations above. At this 
point we replace J / - ,  by a function that approximates it fairly well, respecting its even 
parity in I, 

J I - , ( r )  =sech2( & ( f  + Q )  +sech'( & ( t  - 0) .  (3 .13)  

Replacing (3 .13) ,  (3 .10)  in (3.121, we get from (3 .12)  that E - ,  is a quotient of integrals 
of hyperbolic functions. All the integrals in (3 .12)  can be exactly performed for any 
value of J (see appendix), but we are interested in the behaviour of E-, on J (external 
current) for small J. After long but straightforward calculations, we obtain up tofirsf 
order in J the value 

J. 
3 6 a  

E - , = - -  
a 

(3.14)  

4. Conclusion 

We studied the splitting of the lowest energy eigenvalue of the Schrodinger equivalent 
problem for the bounce solution. We used the Landau-Lifshitz approach [8] to take 
into account the tunnelling effect. In our  case we were able to get the lowest eigenvalue 
of H ,  instead of just the value of the splitting of the energy. The reason is that the 
time translation invariance of the classical solution forces the Schrodinger equivalent 
problem to have a zero eigenvalue. We showed also that E - ,  goes to ze;o as J + O ,  as 
it should since the barrier between the wells tends to infinity. '\ 
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where J ,  = 2 g a 2 / 3 8  
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